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ABSTRACT

The standard multiple use calibration procedure due to Scheffe (1973)
states that with probability 1-&, the proportion of calculated confidence
intervals containing the true unknowns is at least 1-a in the long run. The
probability 1-8 refers to the probability that the calibration experiment
results in a 'good' outcome. In Séheffe's formulation a good outcome involves
both coverage of the true underlying regression curve and an upper confidence
limit for o , the scale parameter. Scheffe's procedure is fairly difficult for
practitioners to apply because it relies on tables that are not easy to use. A
simpler notion of ‘goodness' which only requires the calibration experiment to
result in coverage of the underlying regression leads to easily calculated
confidence intervals for the unknowns. In addition, these intervals are
generally shorter than Scheffe's. An application example is given to illustrate

the technique.

1. Introduction

A calibration curve is often used to relate instrument readings to
established standards and thereby provide meaningful measurements. Accounting
for the resulting uncertainty from calibration is of central importance. A
feature of critical interest is how often the calibration curve is to be used.
Most often, in our experience, the calibration curve will be used many times.
Consequently, the measurements will be correlated and this dependence must be
accounted for. Calibration procedures that account for such dependence have

been developed for the linear model by Lieberman, Miller, and Hamilton (1967)
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and Scheffe (1973). 1In this article we present a new method for coping with
multiple use calibration. Our method is based on a modification of the Scheffe
(1973) confidence statements, but the result is far simpler to implement and
generally leads to shorter intervals. Intervals akin to ours have been used by
scientists and engineers for some time without theorectical justification for
example, see Hockersmith and Ku (1964).

Consider for example the simple linear regression model. Assume that the
responses y are linearly related to predictors x with slope pl and
intercept po. and that the responses are normally distributed with standard

deviation o . Symbolically, we write the model as

(1.1) y = do + 8)x + 06

e ~ N(0,1).

A training sample (or calibration experiment) of size N 1is used to construct
the classical least squares estimates (po,;l.;) of (po pl.a) and then the
calibration curve po + plx is formed with oS(x) denoting the estimated
standard deviation of the curve. The standard deviation of po + plx is
defined to be oS(x), the estimated standard deviation is obtained if o is
replaced by ;. We denote the observations (yl.....yN) of the experiment by Y

and use y to denote a specific outcome of Y.

After this calibration experiment is performed and the calibration curve is

3 3
constructed, we typically observe a series of new "responses” YyeVpe--o which
- .
satisfy (1.1). The associated true values x 2...., are not observed but are
*
to be estimated and confidence intervals for xl.xz.... are to be constructed.




The usual estimate is ;J = (;; - ;0)/;1' and the remaining problem concerns
confidence intervals. 1In what follows, it is convenient to write the true curve
as f(x) = By + plx and the constructed calibration curve as ;(x) = ;0 + ;lx.
The calibration region or the set of x's of interest will be denoted by I.
There is fairly broad agreement on what to do in the case that a single
unknown x* 1is to be estimated baéed on y*. A confidence interval for x*
can be obtained as follows: For given x , let J(x) be a (1-a)-100% prediction
interval for the response y, i.e.,

-

3(x) = £(x) £ty (1-a/2)0(1+8%(x)) 12,

where t, ,(1-a/2) is the 1-a/2 percentile of the Student t-distribution with
N-2 degrees of freedom. For any given y, let K(y) be the set of x for
which y is “correctly” predicted in the sense of being in the prediction
interval, l.e., K(y) = {x]y ¢ J(x)}. Then we know that K(y*) 1is a valid 1l-a

confidence interval for x*. In symbols,
Pr{x®*eK(y*)} = Pr{y*eJ(x*)) = 1-a.

Difficulties arise when one wishes to estimate a sequence of unknowns
3 * ] L
X Xgeenn from observations YyoVpeero o For this multiple use case, Scheffe

(1973) suggests modifying the prediction bands to be of the form

(1.2) Ig(x) = (YIE(x) - (e +c,8(x)) S ¥ SE(x) + alc,+c,S(x))).




L J L
These generally lead to confidence intervals for x given by Ks(y ) =

3 J
(xly}er(x))}; rarely in practice are these sets disconnected. The constants
c1 and cz have to be chosen to satisfy uncertainty criteria required of the
confidence intervals.

The Scheffe method, as does ours, involves an uncertajnty statement that
enco-pagsés two sources of error: .one from the calibration experiment, the
other from the post calibration measurements. The data from the calibration
experiments are used to estimate f and o and one measure of uncertainty is

the probability of the calibration experjiment producing a 'good' estimate of f

and o. Formally, Scheffe defines a 'good' set by
(1.3) Gs = {y] |t(x)-£(x)] s‘czOS(x) all x¢I and o/c 2 b)

where b and ¢, are chosen so that the probability that the experiament is

2
good is 1-8 that is,

(1.4) ¥ ¢ 6] 2 1-5, all p.0°

Pp.o

(here ps(po.pl)). The connection between b, c, and the Cyr Cy of (1.2) and «a,
& 1is spelled out in Scheffe (1973) and we do not repeat the details. The
meaning of (1.3) and (1.4) is clear: 'good' refers to f covered and o
bounded and the probability of 'good' outcomes is controlled to be at least 1-5.
The other level of uncertainty involves the proﬁablllty of covering the

true x* when a new observation y* is made. Using the intervals defined at

(1.2) Scheffe requires that, given a 'good' outcome, the probability of covering



the true x* 1is at least 1-a. In formal terms

(1.5) Pgo? xelKg(¥*) 2 x* | ¥ = y] 2 1

for all p.az. all x*cI, all ngs.

If (1.5) holds then the long-run proportion of confidence intervals covering the

true unknowns (xj) will be at least 1-a if the calibration experiment resulted

in an outcome in G_.. The choice of b and the inclusion of a bound on o in
—-———_—-———-1

the definition of G_, 1is to allow the qplculation leading to (1.5).

S
The choice of < and c, that assures both (1.4) and (1.5) can be obtained
from tables in Scheffe's paper. However, as noted in Lechner, Reeve and
Spiegelman (1982), this table is not easy for practitioners to use. The
difficulty is the need to compute the iinilul and maximum of S(x) over the

region I of interest and this can be a formidable task in linear models more

general than (1.1).

Our approach is first define the 'good' set not by Gs but, by
(1.6) 6 ={y| If(x) - f(x)] = czos(x). all xel},

where ¢, 1s to be chosen to satisfy (1.8) below. This restricts attention to

2
whether the true f is covered; o is auxjliary to that concern. In Section 2

we show how this modification leads to a substantial simplification in the

t
calculation of confidence intervals for the unknown {xJ). In fact, we take the

c, and ¢, of (1.2) as

1 2




- -

(1.7) c, = ty_p(1-a/2)

1/2
c, = (ZFZ.N_Z(I-G))

2

(P2 N_2(1-6) is the 1-8 quantile of the indicated F distribution).
To get the second part of the uncertainty statement note that the choice of
c, in ﬂ1.7) results in

(1.8) o21¥66) 2 1-3 for all p,0°%.

Ps

If we let

Z = max |£(x) - £(x)|/S(x),
xel

so that G can be restated as (Z < czo). then the intervals defined through

(1.2) with ¢, € taken from (1.7) satisfy

2

(1.9) (K(y*) o x*|Z =z, G) 21 -«

Pp,a’.x‘

for all p.oz.x'el. and z. Note that the choice c¢,. ¢ of (1.7), or any choice

1 2

permitting (1.8) and (1.9) to hold, will differ from the €40 € that satisfy

2
(1.4) and (1.5).

In our experience in practical case we get narrower intervals by our method
than by Scheffe's. This is borne out in the example in Section 3 below. Which
is more appropriate, G or Gs. (1.5).or (1.9), for uncertainty statements is not

clear on prior grounds. Both formalize the long run conduct of post-

calibration experiments in terms of the outcomes of the injtial calibration




experiment. The simplicity of (1.7, and its consequences (1.8) and (1.9) appear
to us to have a decided advantage - practitioners understand the role of the F
and the t distributions and have immediate access to appropriate tables, the
uncertainty statements of (1.8) and (1.9) have little added conceptual
complications, and there are no extra computational difficulties in obtaining
the needed €0 €y Indeed, thereils a simple graphical explanation in Figure 1
which shows how the confidence band on f and the error in y* combine to
produce the desired interval for x*. In Figure 1 the (1-8) confidence band is
given by the outer curves; on the y-axis there is a (1-a) interval with y* in
the center. By reflecting the endpoints of the latter interval through the
confidence band we get two points that surround ;‘ and define the confidence
interval for x*. For these reasoﬁs of simplicity and utility we are compelled
to recommend use of G and the consequent easy and quick use of (1.7).

The choices of ¢, and c, can be improved at the expense of added
analysis and computation (see Remarks 1 and 2 of Section 2). If the model (1.1)

is replaced by a multiple regression with p variables including the intercept,

then ¢

1/2
1 " tN_p(l—alz) and c, = (pPp'N_p(l-a)) .

2. Derivation of Results

Assume f follows a multiple regression model with p parameters. As
noted in (1.6) of Section 1 we regard a good outcome of the calibration
experiment as one that is in G. Our first step is to call on standard least

squares theory and note that the requirement




a all xelI] 2 1-8

P(G] = PI(f(x) - £(x)/S(x)]| S c,

is fulfilled if c, = (pF (1-6))Y2  (this can be seen in Scheffe, 1973).

p.N-p

Ideally we would like the smallest possible ¢ but the present choice is

2

simple and adequate for now. We note that Scheffe uses a multiple <+ of this

c for some .95 € v € 1.2 whose choice depends on S(x), p, N.

2

Recall from Section 1 that G can be expressed as {y|Z £ cza) where Z s

defined following (1.8). The independence of f and o, which comes from the

assumption of normality, implies that Z and o are independent random

variables. This independence and straightforward calculation produces

zd, az2q| -=2z)

= Pz £ ¢

(2.2) P[Z £ ¢
2;. ; Z ql
= min [P[o 2 z/cz]. Plo 2 q]]
2 Plo 2 z/c,] Plo 2 q)

= P[Z < cz; | 2 = 2] P[; 2 q].

By dividing the two ends of (2.2) we get

(2.3) Plo2q | 25 c23. 2 = 2] 2 Plo 2 ql.

Let Az =(Z=2z,278% cza). Then

P[K(y) > x | A ] = P[f(x)-f(x)-c,08(x)-0c, < o0& < oc +f(x)-f(x)+c,0S(x)]A]

(2.4) 2 Ploc, S oe S oc | A = [($lc,t)$(-c,t))dH(t)




where H = the conditional distribution of o/0 given Az. The integrand in

(2.4) is clearly increasing in t and we have just shown in (2.3) that
H(t) £ Plo/o = t].
Hence the right side of (2.4) is at least as large as

J(#le t) - ¢(-c t))d Plo/o < t] = PLIty | S c,l.

Choose c, = tN_p(l-alz) and obtain the result: given Z, G the probability of

covering the unknown x 1is at least 1-a.

Remark 1. The use of c2 = (pF (6))1/2 is only made for simplicity.

p-N"p
It is known (Wynn and Bloomfield, 1971; Knafl, Sacks, and Ylvisaker, 1985) that

better choices of ¢ can be made to provide statements like (1.8). An

2

immediate consequence of the arguments here is that such a c, combined with

c, = tN_p(lﬂl/Z) also provides useable confidence bounds and narrower ones than

1
described above.
Remark 2. Examination of {2.4), especially going from the second to the

third expression, reveals that improvement can be obtained by using the

monotonicity properties of the t distribution to replace the third term by
P[-20$(x)cz-clocoel<clalxj.

This leads to choosing ¢ to satisfy

b |




(2.5) P['cl'zczs(X)<tn—p<°1] = 1-a.
Finding c, to satisfy (2.5) requires knowledge of S(x). Since the x's are
unknown, this is unrealistic but we can replace S(x) by min S(x) = so (say)

and then use t-tables to find c1 so that

P(-c,-2c,S <t

172628, <tN-p<cy] = 1@

Unless so = 0, sucha c is smaller than tN_p(l—a/2). A less precise but

1
practical approach is to replace S(x) by S(x) where x = f_l(y) and treat

S$(x) in (2.5) as if it were non-random. This gives data-dependent < but

.

leads to nominal values of confidence that should be close to correct.

Remark 2 is a relatively simple computation and its implementation can lead
to substantial savings in the lengths of intervals. This is clearly indicated
in the example presented in Section 3, see Table 2. We do not over-emphasize
Remarks 1 and 2 because our concern is to make clear the advantage of the quick
and easy use of (1.7). Our recommendation overall would be to employ Remark 2
as well because it is relatively easy to carry out. Implementing Remark 1 is
unlikely to yield great benefits unless the degree p is bigger than 1 or the
problem is one where nonparametric calibration (see Remark 4 below) is needed.
In such cases it would be necessary to incorporate substantial computations (see
Knafl, Sacks, Spiegelman, and Ylvisaker, 1984; Knafl, Sacks, and Ylvisaker,
1985) and would belie our use of the.words "quick and, easy."

Remark 3. It is straightforward to adjust the statements and procedure if

the calibration experiment is performed in one laboratory but the calibrations

_lo-
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are carried on elsewhere. This situation leads possibly to two o's, one in the
calibration experiment, the other from new observations y*. Under usual
assumptions of independence, the modifications needed are easy to make.

Remark 4. ( Nonparametric calibration.) Knafl, et al. (1984) discuss
calibration when the mean of the responses f(x) does not follow a strict linear
model so that the use of a lultlplé regression as done above would be
inappropriate. Examination of the details of arguments used in that paper shows
that considerable simplification in computation can result by use of the G of

(1.6). We forego elaboration of the necessary technicalities.

3. Example
A simple example arises in atomic absorption spectroscopy for which there

are twelve data points as shown in Tabie 1. Figure 2a is a plot of the data of
Table 1. Figure 2b is a plot of the residuals from a straight line fit. These
figures indicate that a straight-line fit to the data is entirely reasonable.

We chose a = 0.10 and 8 = 0.003. Following Scheffe we would get calibrations
based on ; = (0.003, c1 = 2.32 and c2 = 2.36, see the discussion after equation
(1.6). As an exercise, the reader may wish to attempt the calculation of the
Scheffe constants and compare the effort involved with that required to look up

our ¢; = tlo(o.ss) = 1,81 and c, = (2F (0.90))1/2 = 2.41. The calibration

2,10
intervals are given in Table 2 for selected values of y: these intervals
provide numerical evidence of our claim that the Scheffe intervals are typically
significantly longer. The difference in lengths is due to the difference

between G and G, inm (1.6) and (1.3).

]

-11~
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Table 1

Atomic Absorption Spectroscopy

X y
0.0 .048
0.0 .047
0.0 .051

- 0.0 .054

.050 .08¢

.050 .087

.100 -118

-100 .116

.200 .183

.200 - .101

.500 .395

.500 .399

X = amount of copper in a dilute
acid solution measured in
micrograms/milliliter.

y = instrumeat response in
absorbance units.

(The data have been rounded to three decimal places.)
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Table 2

Calibration Intervals: Scheffe’Compared with Section 2

Y * new observation

X e Tower endpoint of calibration interval
X, = upper endpoint
4 = length of calibration interval

First row in each entry is Scheff€ calibration; second
row is calibration according to section 2; third row
uses remark 2; fourth row uses remarks 1 and 2.

y e} X s
.06 001 013 .0302 Scheffe’
.0034 .0290 .0256 Section 2
.0045 0279 .0233 Remark 2
.005) .0273 .0222 Remarks 142
.10 .0592 .0883 .0292
0615 .0860 .0245
0626 .0849 0223
.0631 .0845 .0214
15 J3U% 1601 .0287
337 1578 .0240
1348 1566 .0218
.22 2316 2614 .0298
.2340 .2591 .0251
2351 2579 .0229
.2356 2574 .0219
.30 3453 .3780 .0327
3476 3757 .0281
.3487 3745 .0258
3494 3738 0244
.38 4586 4949 .0363
4608 .4926 0218
4619 4914 .0295
4629 4904 .0275

-14-
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